



# Radar Systems Engineering Lecture 7 Part 2 Radar Cross Section

#### Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

**IEEE New Hampshire Section** 

**IEEE AES Society** 



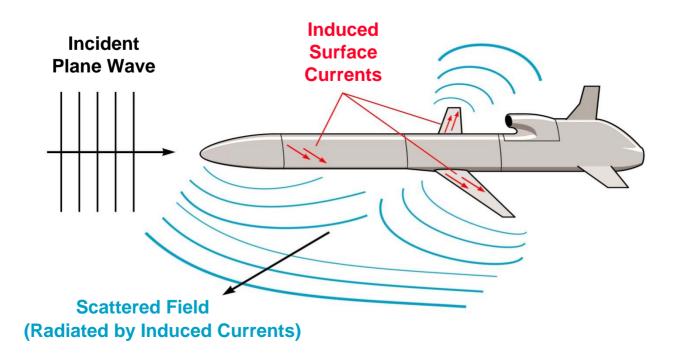
#### Methods of Radar Cross Section Calculation



| RCS Method            | Approach to Determine<br>Surface Currents |  |  |
|-----------------------|-------------------------------------------|--|--|
| Finite Difference-    | Solve Differential Form of Maxwell's      |  |  |
| Time Domain (FD-TD)   | Equation's for Exact Fields               |  |  |
| Method of Moments     | Solve Integral Form of Maxwell's          |  |  |
| (MoM)                 | Equation's for Exact Currents             |  |  |
| Physical Optics       | Currents Approximated by Tangent          |  |  |
| (PO)                  | Plane Method                              |  |  |
| Physical Theory of    | Physical Optics with Added Edge           |  |  |
| Diffraction (PTD)     | Current Contribution                      |  |  |
| Geometrical Optics    | Current Contribution Assumed to Vanish    |  |  |
| (GO)                  | Except at Isolated Specular Points        |  |  |
| Geometrical Theory of | Geometrical Optics with Added Edge        |  |  |
| Diffraction (GTD)     | Current Contribution                      |  |  |







- Two step process to determine scattered fields
  - Determine induced surface currents
  - Calculate field radiated by currents

Courtesy of MIT Lincoln Laboratory Used with permission IEEE New Hampshire Section

**IEEE AES Society** 





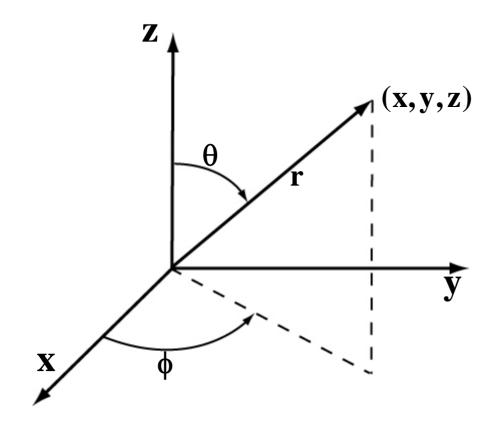
 The Method of Moments calculations predict the exact solution for the target RCS

Surface Patch Model For a Sphere

- Method Solve integral form of Maxwell's Equations
  - Generate a surface patch model for the target -
  - Transform the integral equation form of Maxwell's equations into a set of homogeneous linear equations
  - The solution gives the surface current densities on the target
  - The scattered electric field can then be calculated in a straight forward manner from these current densities
  - Knowledge of the scattered electric field then allows one to readily calculate the radar cross section
- Significant limitations of this method
  - Inversion of the matrix to solve the homogeneous linear equations
  - Matrix size can be very large at high frequencies
     Patch size typically ~λ/10





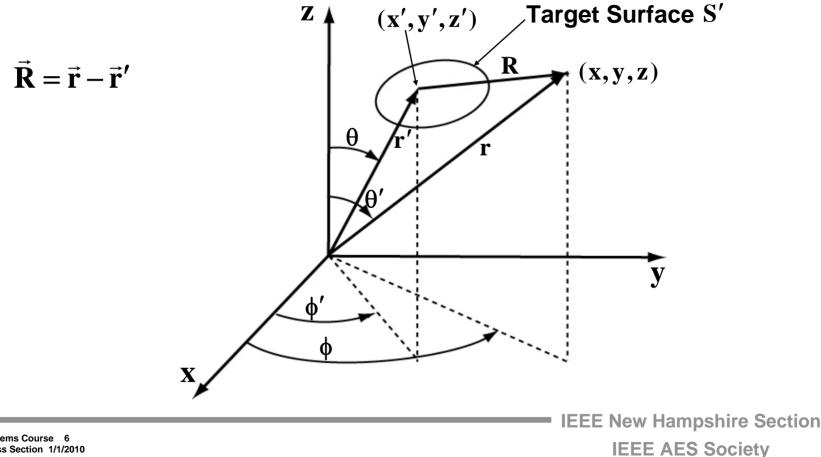




### **Spherical Coordinate System for MOM Calculations**



- Source currents distributed over surface S'
- Field observation point located at (x, y, z)
- Point on surface S' is (x', y', z')







• Maxwell's Equations transform to the Stratton and Chu Equations using the vector Green's Theorem and yield:

$$\vec{\mathbf{E}}_{S} = \oiint_{S'} \left[ + \mathbf{i} \,\omega \,\mu \left( \hat{\mathbf{n}} \, \mathbf{x} \, \vec{\mathbf{H}} \right) \psi + \left( \hat{\mathbf{n}} \, \mathbf{x} \, \vec{\mathbf{E}} \right) \mathbf{x} \, \vec{\nabla} \psi + \left( \hat{\mathbf{n}} \cdot \vec{\mathbf{E}} \right) \vec{\nabla} \psi \, \right] \mathbf{dS'}$$
$$\vec{\mathbf{H}}_{S} = \oiint_{S'} \left[ + \mathbf{i} \,\omega \,\varepsilon \left( \hat{\mathbf{n}} \, \mathbf{x} \, \vec{\mathbf{E}} \right) \psi - \left( \hat{\mathbf{n}} \, \mathbf{x} \, \vec{\mathbf{H}} \right) \mathbf{x} \, \vec{\nabla} \psi - \left( \hat{\mathbf{n}} \cdot \vec{\mathbf{H}} \right) \vec{\nabla} \psi \, \right] \mathbf{dS'}$$
$$\psi = \left[ \frac{\mathbf{e}^{+\mathbf{i}\mathbf{k}\mathbf{R}}}{4\pi\,\mathbf{R}} \right] = \begin{array}{c} \text{Free Space} \\ \text{Green's Function} \end{array} \qquad \mathbf{R} = |\mathbf{r} - \mathbf{r'}|$$

• Free space Green's function is an spherical wave falling of as:  $_{1/R} \ensuremath{$ 

• Also, note: 
$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_{I} + \vec{\mathbf{E}}_{S}$$
  
 $\vec{\mathbf{H}} = \vec{\mathbf{H}}_{I} + \vec{\mathbf{H}}_{S}$ 





- On the surface of the perfectly conducting target these equations become:
  - Total tangential electric field zero at surface
  - No magnetic sources of currents or charges as source of scattered fields
- Electric Field Integral Equation (EFIE)

$$\vec{\mathbf{E}}_{S} = \oiint_{S'} \left[ +\mathbf{i} \ \omega \ \mu (\hat{\mathbf{n}} \ \mathbf{x} \ \vec{\mathbf{H}}) \ \psi + (\hat{\mathbf{n}} \cdot \vec{\mathbf{E}}) \nabla \psi \right] \mathbf{dS'} = \oiint_{S'} \left[ +\mathbf{i} \ \omega \ \mu \ \mathbf{J} \ \psi + \frac{1}{\epsilon} \rho \ \nabla \ \psi \right] \mathbf{dS'}$$

• Magnetic Field Integral Equation (MFIE)

$$\vec{\mathbf{H}}_{\mathbf{S}} = \bigoplus_{\mathbf{S}'} (\hat{\mathbf{n}} \mathbf{x} \, \vec{\mathbf{H}}) \mathbf{x} \, \nabla \psi \, \mathbf{dS}' = \bigoplus_{\mathbf{S}'} \vec{\mathbf{J}} \mathbf{x} \, \nabla \psi \, \mathbf{dS}'$$

- Causes of scattered fields
  - Scattered electric field electric currents and charges
  - Scattered magnetic field electric currents





• Applying the boundary conditions for Maxwell's Equations and the Continuity Equation to free space yields:

$$\hat{\mathbf{n}} \mathbf{x} \, \vec{\mathbf{E}}_{\mathrm{I}} = -\,\hat{\mathbf{n}} \mathbf{x} \, \vec{\mathbf{E}}_{\mathrm{S}} = \hat{\mathbf{n}} \mathbf{x} \, \oiint_{\mathrm{S'}} \left[ +\,\mathbf{i} \, \omega \, \mu \, \, \vec{\mathbf{J}} \, \psi + \frac{+\,\mathbf{i}}{\omega \, \epsilon} \nabla \cdot \, \vec{\mathbf{J}} \, \nabla \, \psi \right] \mathbf{dS'}$$
$$\hat{\mathbf{n}} \mathbf{x} \, \vec{\mathbf{H}}_{\mathrm{I}} = \frac{\vec{\mathbf{J}}}{2} - \,\hat{\mathbf{n}} \mathbf{x} \, \oiint_{\mathrm{S'}} \vec{\mathbf{J}} \mathbf{x} \, \nabla \, \psi \, \mathbf{dS'}$$

- **Procedure to calculate the scattered electric field:** 
  - Convert the integral equation into a set of algebraic equations
  - Solve for induced current density using matrix algebra
  - With the current density known, the calculation of the scattered electric field,  $\vec{E}^{S}$ , is reasonably straightforward and the cross section can be calculated:  $|\mathbf{r}^{S}|^{2}$

$$\sigma = 4 \pi \mathbf{R}^2 \frac{\left|\mathbf{E}^{\mathbf{S}}\right|^2}{\left|\mathbf{E}^{\mathbf{I}}\right|^2}$$





- Break up the target into a set of N discrete patches
  - 7 to 10 patches per wavelength
- Expand the surface current density as a set of known basis functions

$$\vec{\mathbf{J}}(\vec{\mathbf{r}}) = \sum_{n=1}^{N} \mathbf{I}_n \vec{\mathbf{B}}_n(\vec{\mathbf{r}})$$

Surface Patch Model For Sphere

• Define the "Magnetic Field Operator",  $L_{\rm H}(\vec{J})$ , as

$$\mathbf{L}_{\mathrm{H}}(\vec{\mathbf{J}}) \equiv \frac{\vec{\mathbf{J}}}{2} - \hat{\mathbf{n}} \mathbf{x} \bigoplus_{\mathbf{S}'} \vec{\mathbf{J}} \mathbf{x} \nabla \psi \, \mathbf{dS}'$$



• Insert the series expansion of currents and bringing the sum out of the operator, we get:

$$L_{\rm H}(\vec{J}) = \sum_{n=1}^{N} I_n L_{\rm H}(\vec{B}_n(\vec{r})) = \hat{n} \times \vec{H}^{\rm I}$$





• Multiply by the weighting vector,  $\vec{W}_{\!_m}$  , and integrating over the surface:

$$\oint_{S} \left[ \vec{W}(\vec{r}) \cdot \left( \hat{n} \ x \ \vec{H}^{I} \right) \right] dS - \sum_{n=1}^{N} I_{n} \ i \ \omega \mu \bigoplus_{S'} \ \bigoplus_{S} \vec{W}_{m} \cdot L(\vec{B}_{n}(r)) dS' dS = 0$$

$$m = 1, 2, 3, \dots N$$

$$- \text{ Point Testing } \vec{W}_{m} = \delta(\vec{r} - \vec{r}_{m})$$

- Galerkin's Method 
$$\vec{W}_m = \vec{B}_m(\vec{r})$$

• This is a set of N equations in N unknowns (current coefficients, I<sub>m</sub>) of the form:

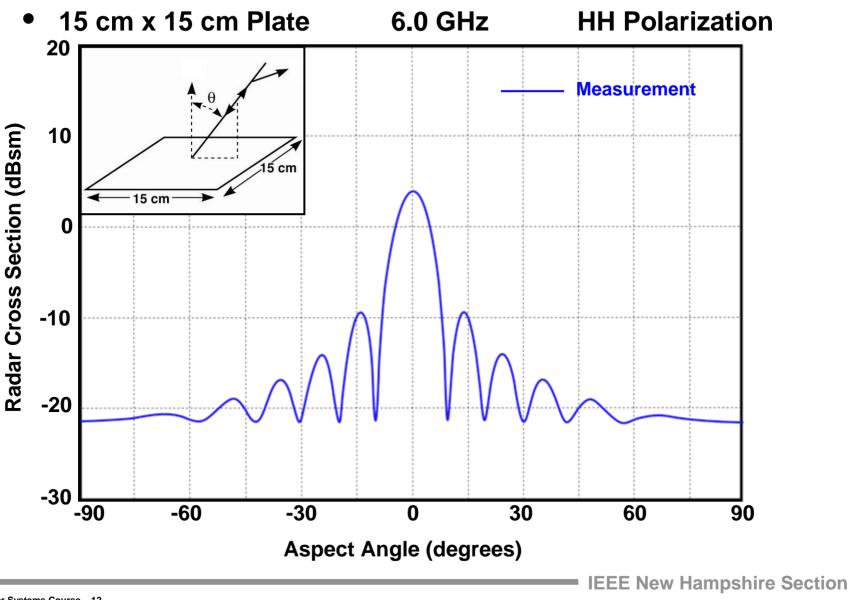
$$\vec{\mathbf{Z}} \, \vec{\mathbf{I}} = \vec{\mathbf{V}} \implies \vec{\mathbf{I}} = \vec{\mathbf{Z}}^{-1} \, \vec{\mathbf{V}}$$

• The only difficulty is inversion of a very large matrix



## **Monostatic RCS of a Square Plate**



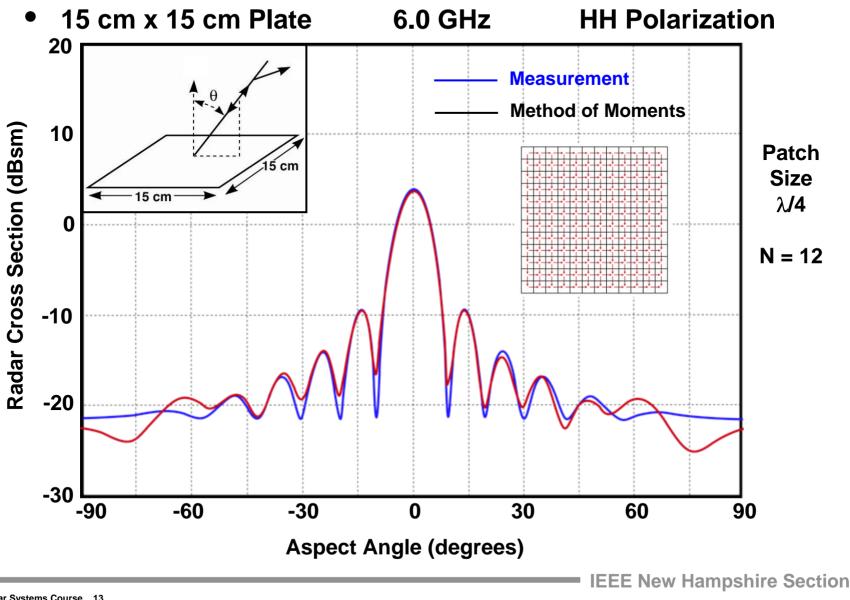


IEEE AES Society



## **Monostatic RCS of a Square Plate**



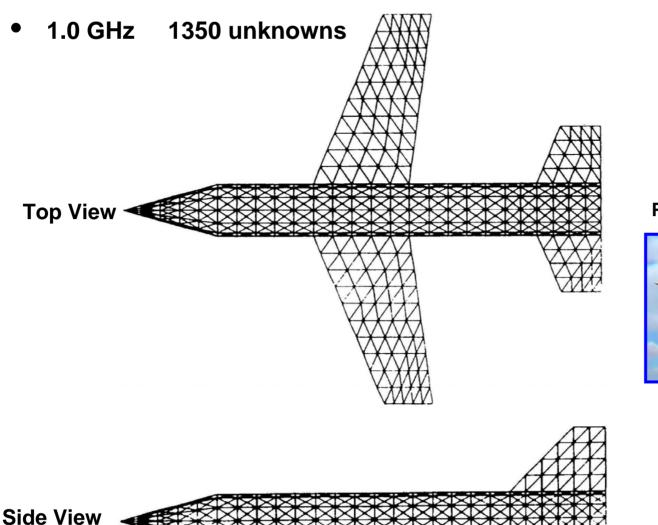


**IEEE AES Society** 



#### Surface Patch Model of JGAM for Method of Moments RCS Calculation





#### Photo of JGAM on Pylon



Courtesy of MIT Lincoln Laboratory Used with Permission





- Method of moments solution is exact
  - Patch size must be small enough
  - 7 to 10 samples per wavelength
- Well suited for small targets at long wavelengths
  - Example Artillery shell at L-Band (23 cm)
- Aircraft size targets result in extremely large matrices to be inverted
  - JGAM (~ 5m length)
    - 1350 unknowns at 1.0 GHz
  - Typical Fighter aircraft (~ 5m length)
    - A very difficult computation problem at S-Band (10 cm wavelength)

## Comparison of MoM and FD-TD Techniques

- For Single Frequency RCS Predictions (perfect conductors)
- 2-Dimensional Calculation
- 3-Dimensional Calculation

|             | Method of Moments<br>(MoM)   | Finite Difference-<br>Time Domain (FD-TD) |  |
|-------------|------------------------------|-------------------------------------------|--|
| Method of   | Integral Equation            | Differential Equation                     |  |
| Calculation | Frequency Domain             | Time Domain                               |  |
| No. of      | N (2-D) N <sup>2</sup> (3-D) | $N^2$ (2-D) N <sup>3</sup> (3-D)          |  |
| Unknowns    |                              |                                           |  |
| Memory      | Matrix Decomposition         | Time Steps                                |  |
| Requirement | $N^{3}$ (2-D) $N^{6}$ (3-D)  | $N^3$ (2-D) $N^4$ (3-D)                   |  |
| Computer    | $N^2$ (2-D) $N^4$ (3-D)      | $N^2$ (2-D) $N^3$ (3-D)                   |  |
| Time        |                              |                                           |  |
| Accuracy    | Exact                        | Exact                                     |  |
|             |                              |                                           |  |





#### Methods of Radar Cross Section Calculation



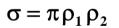
| RCS Method            | Approach to Determine<br>Surface Currents     |  |
|-----------------------|-----------------------------------------------|--|
| Finite Difference-    | Solve Differential Form of Maxwell's          |  |
| Time Domain (FD-TD)   | Equation's for Exact Fields                   |  |
| Method of Moments     | Solve Integral Form of Maxwell's              |  |
| (MoM)                 | Equation's for Exact Currents                 |  |
| Geometrical Optics    | <b>Current Contribution Assumed to Vanish</b> |  |
| (GO)                  | Except at Isolated Specular Points            |  |
| Physical Optics       | Currents Approximated by Tangent              |  |
| (PO)                  | Plane Method                                  |  |
| Geometrical Theory of | Geometrical Optics with Added Edge            |  |
| Diffraction (GTD)     | Current Contribution                          |  |
| Physical Theory of    | Physical Optics with Added Edge               |  |
| Diffraction (PTD)     | Current Contribution                          |  |





ĥ

- Geometrical Optics (GO) is an approximate method for RCS calculation
  - Valid in the "optical" region (target size >>  $\lambda$ )
- Based upon ray tracing from the radar to "specular points" on the surface of the target
  - "Specular points" are those points, whose normal vector points back to the radar.
- The amount of reflected energy depends on the principal radii of curvature at the surface reflection point
- Geometrical optics (GO) RCS calculations are reasonably accurate to 10 – 15% for radii of curvature of 2 λ to 3λ
- The GO approximation breaks down for flat plates, cylinders and other objects that have infinite radii of curvature; and at edges of these targets



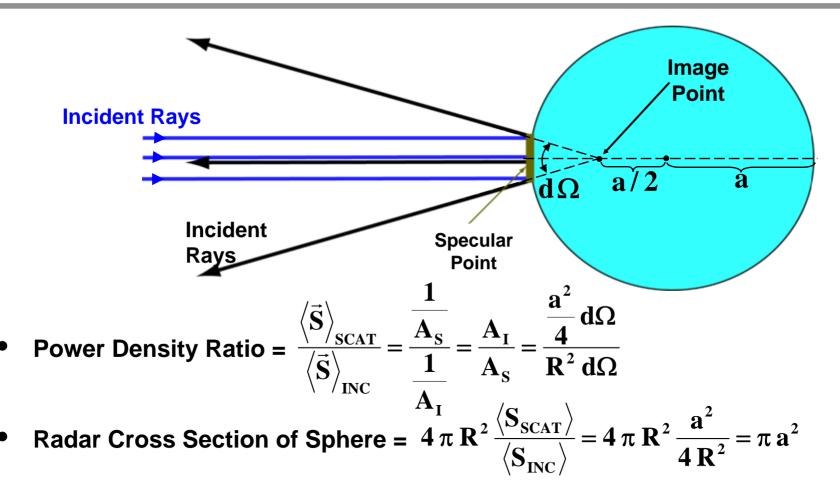
IEEE New Hampshire Section IEEE AES Society

 $\rho_1$ 



#### **Geometric Optics**

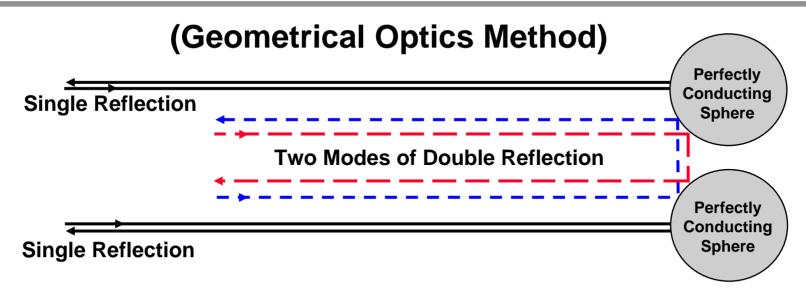




- Radar Cross Section of an Arbitrary Specular Point =  $\pi \rho_1 \rho_2$ 
  - Where radii of curvature at specular point =  $\rho_1$ ,  $\rho_2$







- RCS Calculation for Single Reflection
  - Identify all specular points and add contributions
  - Phase calculated from distance to and from specular point
  - Local radii of curvature used to determine amplitude of backscatter
- RCS Calculation for Double Reflection
  - Identify all pairs of specular points
  - At each reflection use single reflection methodology to calculate amplitude and phase



#### Methods of Radar Cross Section Calculation



| RCS Method            | Approach to Determine<br>Surface Currents |  |  |
|-----------------------|-------------------------------------------|--|--|
| Finite Difference-    | Solve Differential Form of Maxwell's      |  |  |
| Time Domain (FD-TD)   | Equation's for Exact Fields               |  |  |
| Method of Moments     | Solve Integral Form of Maxwell's          |  |  |
| (MoM)                 | Equation's for Exact Currents             |  |  |
| Geometrical Optics    | Current Contribution Assumed to Vanish    |  |  |
| (GO)                  | Except at Isolated Specular Points        |  |  |
| Physical Optics       | Currents Approximated by Tangent          |  |  |
| (PO)                  | Plane Method                              |  |  |
| Geometrical Theory of | Geometrical Optics with Added Edge        |  |  |
| Diffraction (GTD)     | Current Contribution                      |  |  |
| Physical Theory of    | Physical Optics with Added Edge           |  |  |
| Diffraction (PTD)     | Current Contribution                      |  |  |





- Physical Optics (PO) is an approximate method for RCS calculation
  - Valid in the "optical" region (target size >>  $\lambda$ )
- Method Physical Optics (PO) calculation
  - Modify the Stratton-Chu integral equation form of Maxwell's Equations, assuming that the target is in the far field
  - Assume that the total fields, at any point, on the surface of the target are those that would be there if the target were flat

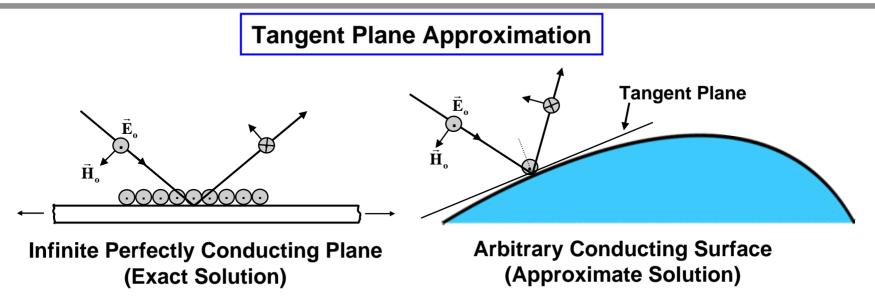
Called "Tangent plane approximation"

- Assume perfectly conducting target
- Resulting equation for the scattered electric field may be readily calculated
- RCS is easily calculated from the scattered electric field
- Physical Optics RCS calculations:
  - Give excellent results for normal (or nearly normal) incidence (< 30°)
  - Poor results for shallow grazing angles and near surface edges
     e.g. leading and trailing edges of wings or edges of flat plates



## **Physical Optics**





• For an incident plane wave :

 $\vec{\mathbf{J}}_{\mathrm{S}}(\vec{\mathbf{r}}') = 2\,\hat{\mathbf{n}}\,\,\mathbf{x}\,\vec{\mathbf{H}}_{\mathrm{o}}\mathbf{e}^{-\mathbf{i}\,\mathbf{k}\,\hat{\mathbf{r}}\,\cdot\,\vec{\mathbf{r}}'}$ 

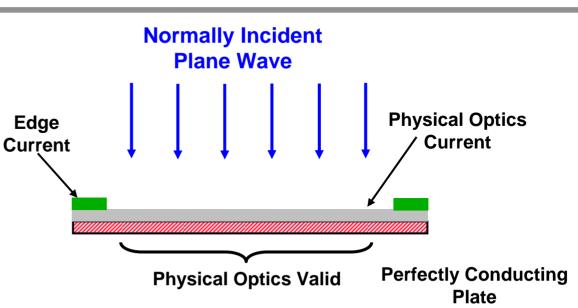
• Substituting this surface current yields (for the monostatic case)

$$\vec{\mathbf{E}}_{\mathrm{S}}(\vec{\mathbf{r}}) = -2i\omega\mu \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{4\pi\mathrm{r}} \int \hat{\mathbf{r}} \mathbf{x} \,\hat{\mathbf{r}} \,\mathbf{x} \Big(\hat{\mathbf{n}} \mathbf{x} \,\vec{\mathbf{H}}_{\mathrm{o}}\Big) \mathrm{e}^{-2\,\mathrm{i}\,\mathbf{k}\,\hat{\mathbf{r}}\,\cdot\,\vec{\mathbf{r}}'} \mathrm{d}\vec{\mathbf{r}}'$$

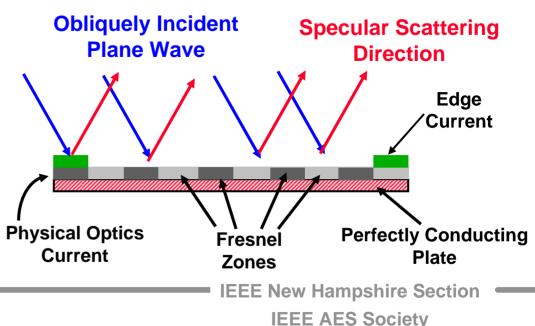




- Physical Optics contribution adds constructively (in phase)
- For large plates, the edge contribution is a small part of the total current
- Except near the edges, Physical Optics gives accurate results

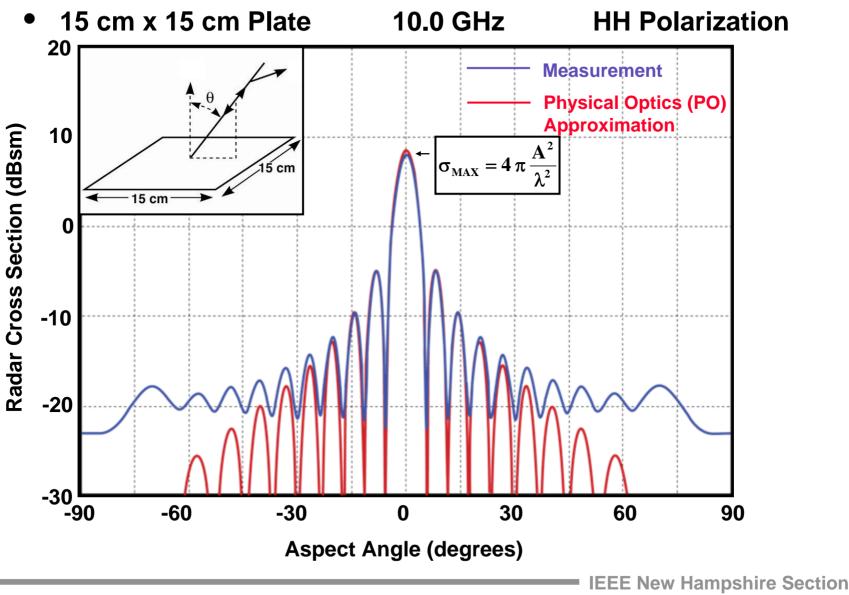


- Except near the edges, Physical Optics gives accurate results
- Fresnel Zones of alternating phase caused by phase delay across plate
- In the backscatter direction, the Physical Optics contribution is predominantly cancelled
- The most significant part of total F current due to edge effects









IEEE AES Society



#### Methods of Radar Cross Section Calculation



| RCS Method                   | Approach to Determine<br>Surface Currents |  |  |
|------------------------------|-------------------------------------------|--|--|
| Finite Difference-           | Solve Differential Form of Maxwell's      |  |  |
| Time Domain (FD-TD)          | Equation's for Exact Fields               |  |  |
| Method of Moments            | Solve Integral Form of Maxwell's          |  |  |
| (MoM)                        | Equation's for Exact Currents             |  |  |
| Geometrical Optics           | Current Contribution Assumed to Vanish    |  |  |
| (GO)                         | Except at Isolated Specular Points        |  |  |
| Physical Optics              | Currents Approximated by Tangent          |  |  |
| (PO)                         | Plane Method                              |  |  |
| <b>Geometrical Theory of</b> | Geometrical Optics with Added Edge        |  |  |
| Diffraction (GTD)            | Current Contribution                      |  |  |
| Physical Theory of           | Physical Optics with Added Edge           |  |  |
| Diffraction (PTD)            | Current Contribution                      |  |  |



#### Geometrical Theory of Diffraction (GTD) Overview



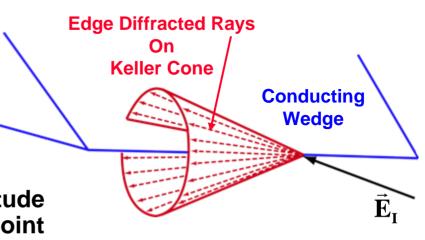
- Geometrical Theory of Diffraction (GTD) a ray tracing method of calculating the diffracted fields at surface edges / discontinuities
  - Assumption: When ray impinges on an edge, a cone (see Keller (1957) Cone below) of diffracted rays are generated
  - Half angle of cone is equal to the angle,  $\beta$  , between the edge and the incident ray.

In backscatter case the cone becomes a disk

- Diffracted electric field proportional to "diffraction coefficients", X and Y and a "divergence factor,  $\Gamma$  , and given by:

$$\left|\vec{\mathbf{E}}_{\mathrm{DIF}}\right| = \frac{\Gamma e^{\mathrm{i}ks} e^{\mathrm{i}\pi/4}}{\sin\beta\sqrt{2\pi ks}} \left(\mathbf{X} \neq \mathbf{Y}\right)$$

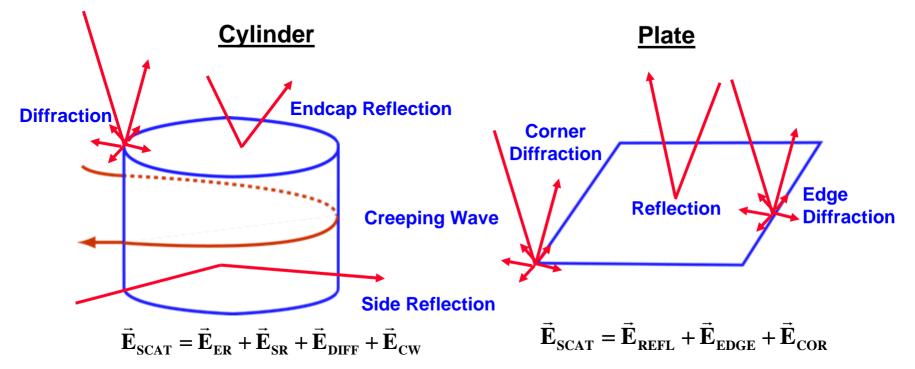
- Diffraction coefficients
  - – when  $\vec{E}_{I}$  parallel to edge
  - + when  $\vec{\mathbf{H}}_{T}$  parallel to edge
- Divergence factor reduces amplitude as rays diverge from scattering point and accounts for curves edges











- Advantages
  - Easy to Understand
  - Multiple Interactions
- Disadvantages
  - Implementation difficult for complex targets
  - Requires more accurate description than PTD



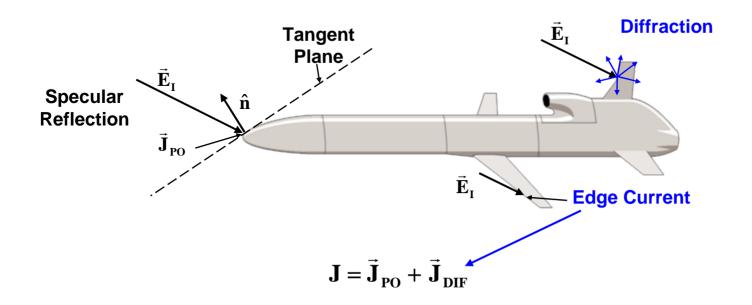
#### Methods of Radar Cross Section Calculation



| RCS Method            | Approach to Determine<br>Surface Currents |  |  |
|-----------------------|-------------------------------------------|--|--|
| Finite Difference-    | Solve Differential Form of Maxwell's      |  |  |
| Time Domain (FD-TD)   | Equation's for Exact Fields               |  |  |
| Method of Moments     | Solve Integral Form of Maxwell's          |  |  |
| (MoM)                 | Equation's for Exact Currents             |  |  |
| Geometrical Optics    | Current Contribution Assumed to Vanish    |  |  |
| (GO)                  | Except at Isolated Specular Points        |  |  |
| Physical Optics       | Currents Approximated by Tangent          |  |  |
| (PO)                  | Plane Method                              |  |  |
| Geometrical Theory of | Geometrical Optics with Added Edge        |  |  |
| Diffraction (GTD)     | Current Contribution                      |  |  |
| Physical Theory of    | Physical Optics with Added Edge           |  |  |
| Diffraction (PTD)     | Current Contribution                      |  |  |

#### Physical Theory of Diffraction (PTD) Overview



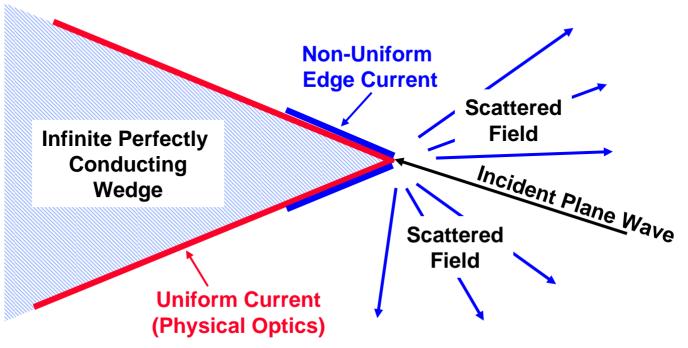


- Approach: Integrate surface current obtained from local tangent plane approximation (plus edge current)
- Advantages: Reduced computational requirements and applicable to arbitrary complex geometries
- Disadvantages: Neglects multiple interactions or shadowing

Courtesy of MIT Lincoln Laboratory Used with permission





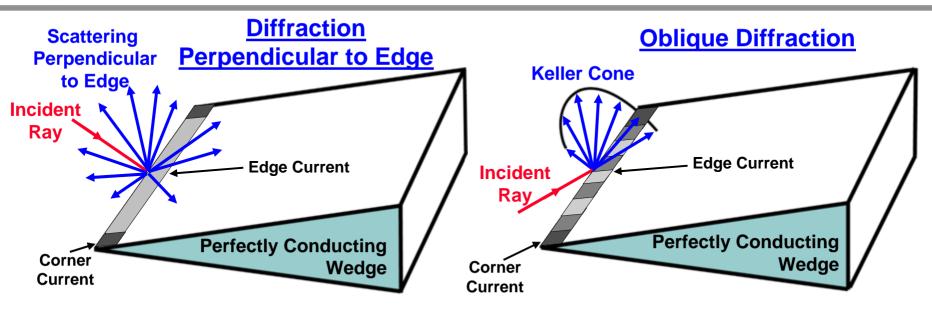


- In 1896, Sommerfeld developed a method to find the total scattered field for an the infinite, perfectly conducting wedge.
- In 1957, Ufimtsev obtained the edge current contributions by subtracting the physical optics contributions from the total scattered field.
- The current for finite length structures may be obtained by truncating the edge current from that of the infinite structure



## **Normal and Oblique Diffraction**





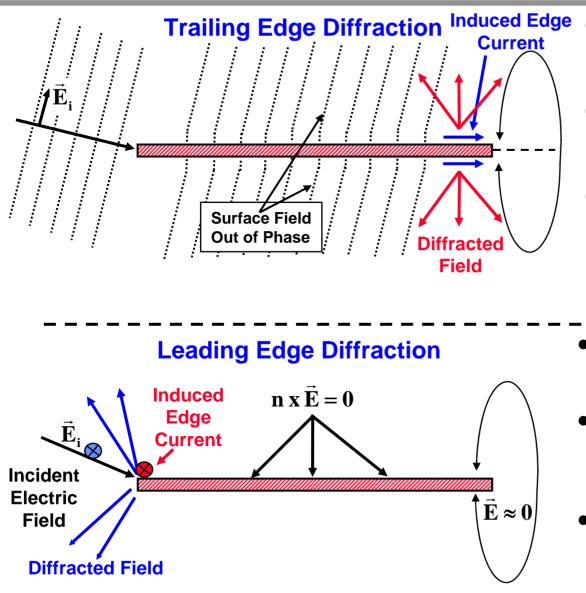
- <u>Constructive</u> addition from edge current contribution along entire edge results in strong perpendicular backscatter
- Small contribution from corner edge current
- Perpendicular to edge, scattering is strong in all directions

- Edge current contribution interferes <u>destructively</u> in direction of backscatter
- For near grazing angles, corner current may be significant
- Strong scattering along "Keller Cone"



## **Trailing / Leading Edge Diffraction**

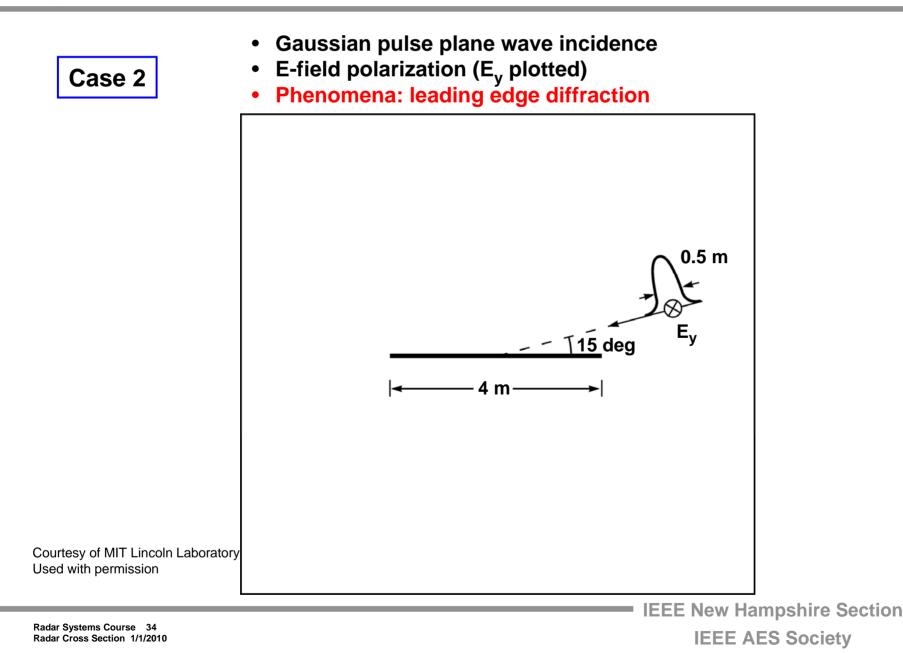




- Negligible scattering at front edge – Electric field normal and continuous
- Traveling waves; above and below plate develop a relative phase delay.
- Required continuity of electric field at back edge causes induced edge current, and thus a diffracted electric field.
- Tangential component of electric field equals zero along the conductor.
- Diffracted electric field is produced by current induced to cancel incident electric field.
- No diffraction at back edge because electric field is close to zero.



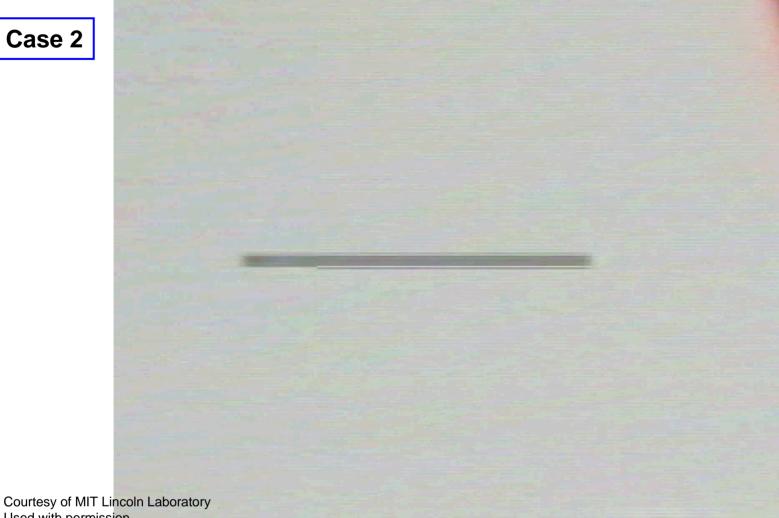








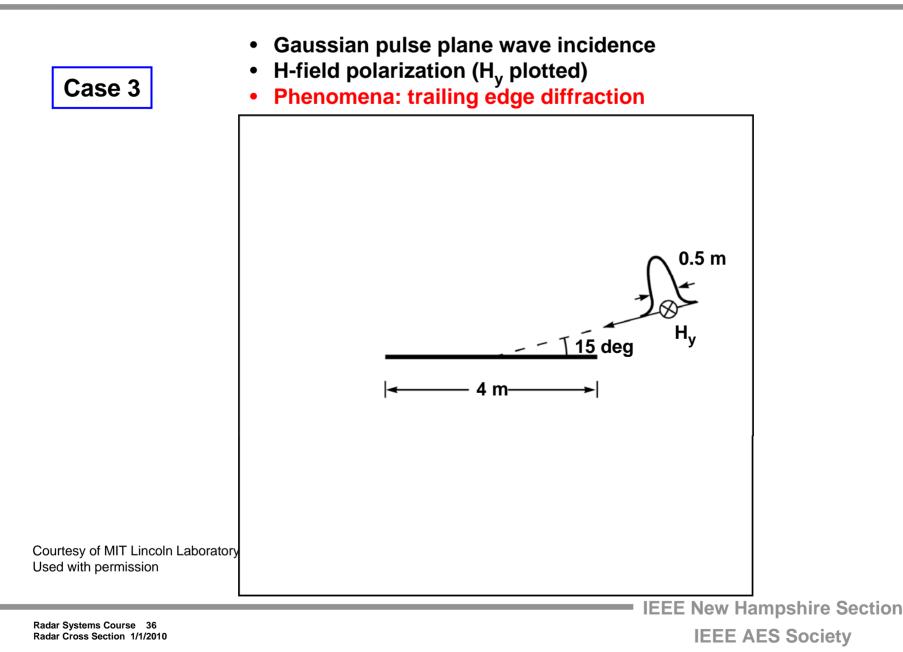
Case 2



Used with permission



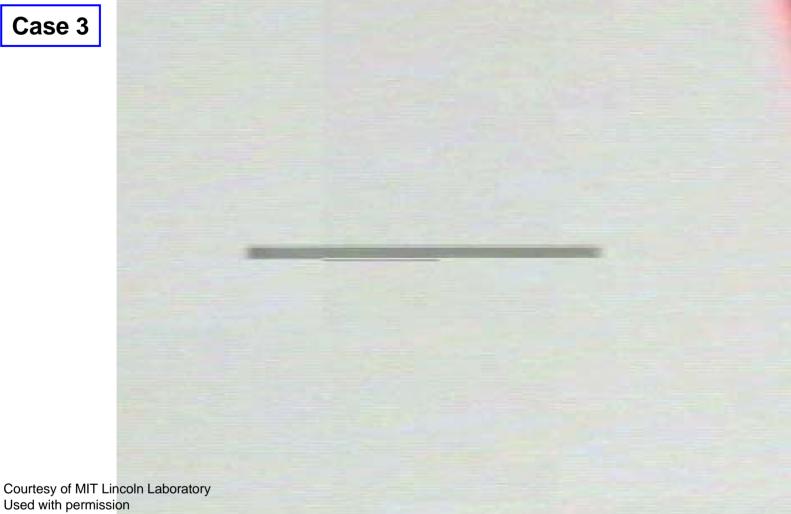






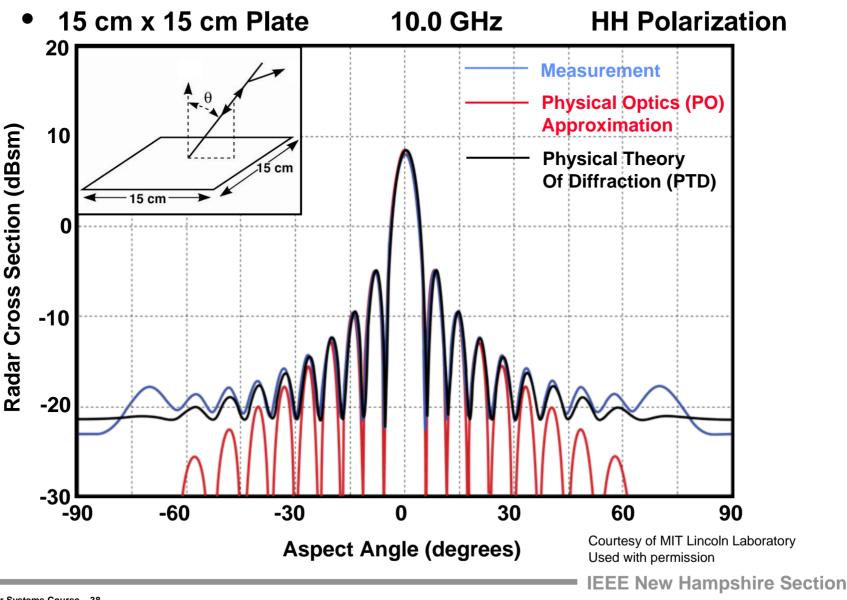












Radar Systems Course 38 Radar Cross Section 1/1/2010

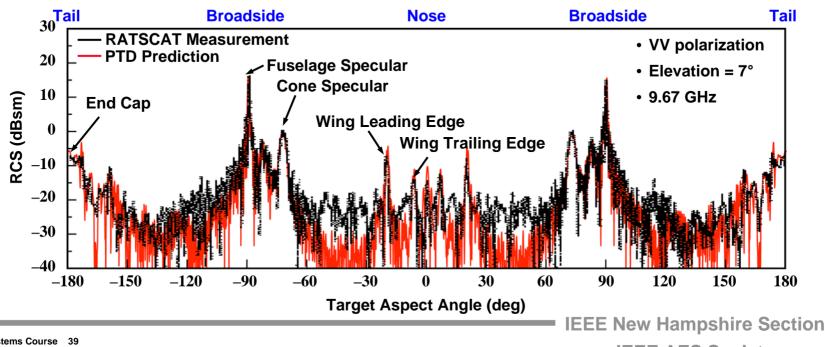
IEEE AES Society







Courtesy of MIT Lincoln Laboratory Used with permission



IEEE AES Society

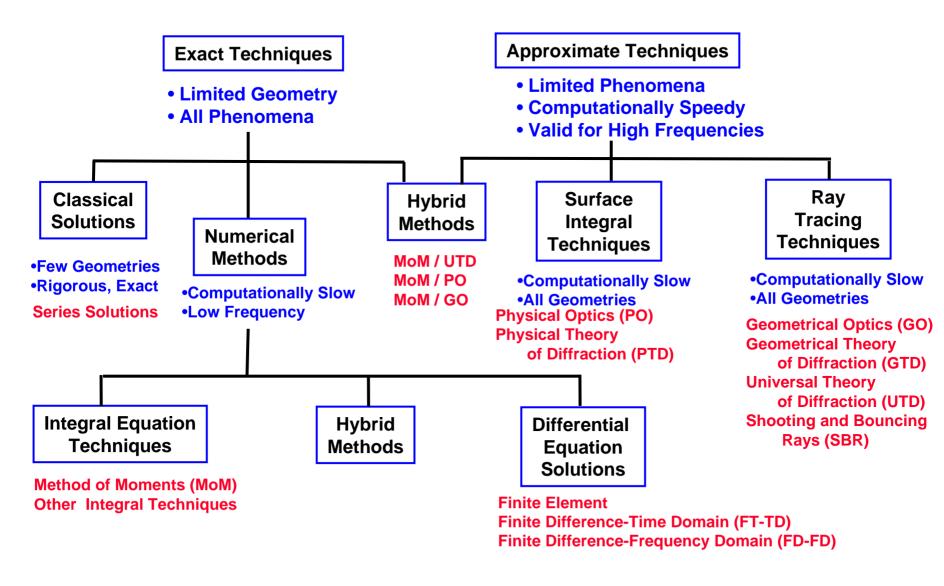




- Introduction
  - A look at the few simple problems
- RCS prediction
  - Exact Techniques
    - Finite Difference- Finite Time Technique (FD-FT) Method of Moments (MOM)
    - Approximate Techniques
       Geometrical Optics (GO)
       Physical Optics (PO)
       Geometrical Theory of Diffraction (GTD)
       Physical Theory of Diffraction (PTD)
- Comparison of different methodologies









#### Comparison of Different RCS Calculation Techniques



|                                      | Methods of Calculation                             |                                          |                                                                         |                                                                      |
|--------------------------------------|----------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                      | FT-TD                                              | МОМ                                      | GO - GTD                                                                | PO-PTD                                                               |
| Calculation<br>Of<br>Current         | Exact<br>Solve Partial<br>Differential             | Exact<br>(Solve Integral                 | Specular Point<br>Reflections                                           | Tangent Plane<br>Approximation                                       |
| Guirein                              | Equation                                           | Equation)                                | (Edge Currents)                                                         | (Edge Currents)                                                      |
| Physical<br>Phenomena<br>Considered  | All                                                | All                                      | Ray Tracing                                                             | Reflections<br>(Single & Double)<br>Diffraction                      |
| Main<br>Computational<br>Requirement | Time<br>Stepping                                   | Matrix<br>Inversion                      | Multiple<br>Reflection<br>Diffraction                                   | Surface Integration<br>-<br>Shadowing                                |
| Advantages                           | Exact<br>Visualization Aids<br>Physical Insight    | Exact                                    | - Simple<br>Formulation<br>- Good Insight<br>into Physical<br>Phenomena | Easiest Computationally<br>- Good Insight into Physical<br>Phenomena |
| Limitations<br>And/or                | - Low Frequency<br>Only<br>- Complex               | - Low Frequency<br>Only<br>- Formulation | - High Frequency<br>Only                                                | - High Frequency Only<br>- Many                                      |
| Disadvantages                        | Geometries Difficult<br>- Single Incident<br>Angle | Difficult<br>(Materials)                 | - Canonical<br>Geometries Only                                          | Phenomena Neglected                                                  |
|                                      |                                                    | - Single Frequency                       | - Caustics                                                              |                                                                      |



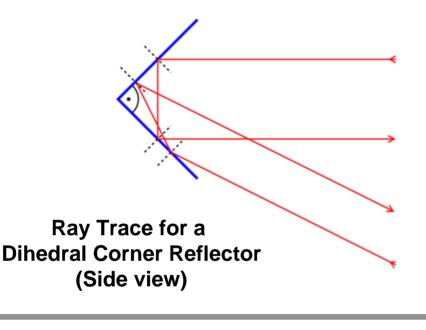


- Give a large reflection,  $\sigma$  , over a wide range of angles
  - Used as test targets and for radar calibration

Square, triangular, and circular

Sailboat Based Circular Trihedral Corner Reflector

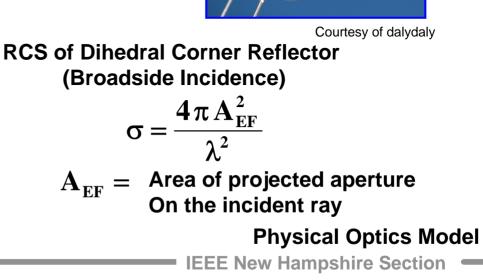




**Different shapes** 

Dihedral

Trihedral



**IEEE AES Society** 





- Target RCS depends on its characteristics and the radar parameters
  - Target : size, shape, material, orientation
  - Radar : frequency, polarization, range, viewing angles, etc
- The target RCS is due to many different scattering centers
  - Structural, Propulsion, and Avionics
- Many RCS calculation tools are available
  - Take into account the many different electromagnetic scattering mechanisms present
- Measurements and predictions are synergistic
  - Measurements anchor predictions
  - Predictions validate measurements





- 1. Atkins, R., *Radar Cross Section Tutorial*, 1999 IEEE National Radar Conference, 22 April 1999.
- 2. Skolnik, M., *Introduction to Radar Systems*, New York, McGraw-Hill, 3<sup>rd</sup> Edition, 2001.
- 3. Skolnik, M., *Radar Handbook*, New York, NY, McGraw-Hill, 3<sup>rd</sup> Edition, 2008 (Chapter 14 authored by E. Knott)
- 4. Ruck, et al., *Radar Cross Section Handbook*, Plenum Press, New York, 1970, 2 vols.
- 5. Knott et al., *Radar Cross Section*, Massachusetts, Artech House, Norwood, MA, 1993.
- 6. Bhattacharyya, A. K. and Sengupta, D. L., *Radar Cross* Section Analysis and Control, Artech House, Norwood, MA, 1991.
- 7. Levanon, N., Radar Principles, Wiley, New York, 1988





- Dr. Robert T-I. Shin
- Dr. Robert K. Atkins
- Dr. Hsiu C. Han
- Dr. Audrey J. Dumanian
- Dr. Seth D. Kosowsky





- From Skolnik (Reference 2)
  - Problems 2-10, 2-11, 2-12, and 2-13
- From Levanon (Reference 6)
  - Problems 2-1 and 2-5
- For an ellipsoid of revolution, (semi major axis, a ,aligned with the x-axis, semi minor axis, b, aligned with the y axis, and axis of rotation is the x-axis; what are the radar cross sections (far field) looking down the x, y, and z axes, if the radar has wavelength  $\lambda$  and a >>  $\lambda$  and b >>  $\lambda$ ?
- Extra credit: Solve the last problem assuming a <<  $\lambda$  and b <<  $\lambda$ .